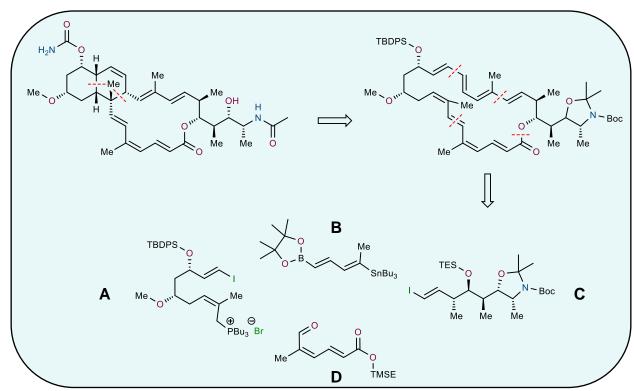


superstolide A



- First isolated in 1994 from *Neosiphonia superstes*, a New Caledonian sponge by D'Auria et. al.
- This molecule along with other members of its respective macrolide family demonstrate potent cytotoxicity against several cancer cell lines.
- Exhibits an IC_{50} of 5ng/mL against murine P388 leukemia cells, 5mg/mL against human nasopharyngeal cells, and 4mg/mL against non-small-cell lung carcinoma cell lines.
- This was the first synthesis of superstolide A, which features an elegant transannular Diels-Alder reaction to form a 24-membered octaene and cis-fused dealin system in a single step.

William Roush

Retrosynthetic Analysis

- Strategy breaks the molecule down into 4 simplified building blocks, depicted as A, B, C, and D.
- An alternatively explored route featured a Diels-Alder with a linear precursor that failed to undergo subsequent macrolactonization to forge the octaene macrocycle.
- Using this previous insight on the Diels-Alder, a method of macrocyclization through such chemistry was developed.

Roush, W. J. Am. Chem. Soc. 2008, 130, 9, 2722-2723 https://doi.org/10.1021/ja710238h

2

Synthesis of Fragment A

Synthesis of Fragment B

Synthesis of Fragment C

1. TES-OTf, NEt₃ 2. O₃, DCM, MeOH, then PPh₃ 3. CrCl₂, CHI₃, THF, dioxane 4. TBAF, THF 79% over 4 steps

Synthesis of Fragment D

Roush, W. J. Am. Chem. Soc. 2008, 130, 9, 2722-2723 https://doi.org/10.1021/ja710238h

Combining Fragments

Finishing the Synthesis